Sum and Difference Identities

Learn about the sum and difference identities.

Sum and Difference Identities Lesson

The Identities

In trigonometry, there are six sum and difference identities. They are useful when the given angle in a trigonometry expression cannot be evaluated. The six sum and difference identities are given as:

$$\begin{align}& \text{1.) } sin(a + b) = sin\,a\:cos\,b + cos\,a\:sin\,b \\ \\ & \text{2.) } sin(a - b) = sin\,a\:cos\,b - cos\,a\:sin\,b \\ \\ & \text{3.) } cos(a + b) = cos\,a\:cos\,b - sin\,a\:sin\,b \\ \\ & \text{4.) } cos(a - b) = cos\,a\:cos\,b + sin\,a\:sin\,b \\ \\ & \text{5.) } tan(a + b) = \frac{tan\,a + tan\,b}{1 - tan\,a\:tan\,b} \\ \\ & \text{6.) } tan(a - b) = \frac{tan\,a - tan\,b}{1 + tan\,a\:tan\,b} \end{align}$$

Want unlimited access to Voovers calculators and lessons?
Join Now
100% risk free. Cancel anytime.
INTRODUCING

Sum and Difference Identities Example Problem

Let's work through an example problem together to practice using the identities.

$$\begin{align}& \text{Evaluate the following three trigonometry expressions by} \\ & \text{using the sum and difference identities.} \\ \\ & \text{1.) } sin(\frac{\pi}{12}) \\ \\ & \text{2.) } cos(\frac{\pi}{12})\\ \\ & \text{3.) } tan(\frac{\pi}{12}) \\ \\ & \text{Solution:} \\ \\ & \text{To evaluate the angle } \frac{\pi}{12} \text{ without a calculator we can use } \frac{\pi}{4} - \frac{\pi}{6} \text{.} \\ \\ & \text{This means we use the difference identities where } a - b = \frac{\pi}{4} - \frac{\pi}{6} \text{.} \\ \\ & \text{Therefore, } a = \frac{\pi}{4} \text{ and } b = \frac{\pi}{6} \text{.} \\ \\ & \text{1.) } sin(\frac{\pi}{12}) = sin(\frac{\pi}{4}) \: cos(\frac{\pi}{6}) - cos(\frac{\pi}{4}) \: sin(\frac{\pi}{6}) \\ & \hspace{3ex} \text{The final answer is } \frac{\sqrt{6} - \sqrt{2}}{4} \text{ or } 0.259 \text{.} \\ \\ & \text{2.) } cos(\frac{\pi}{12}) = cos(\frac{\pi}{4}) \: cos(\frac{\pi}{6}) + sin(\frac{\pi}{4}) \: sin(\frac{\pi}{6}) \\ & \hspace{3ex} \text{The final answer is } \frac{\sqrt{6} + \sqrt{2}}{4} \text{ or } 0.966 \text{.} \\ \\ & \text{3.) } tan(\frac{\pi}{12}) = \frac{tan(\frac{\pi}{4}) - tan(\frac{\pi}{6})}{1 + tan(\frac{\pi}{4})\:tan(\frac{\pi}{6})} \\ & \hspace{3ex} \text{The final answer is } 2 - \sqrt{3} \text{ or } 0.268 \text{.} \end{align}$$

Learning math has never been easier.
Get unlimited access to more than 168 personalized lessons and 73 interactive calculators.
Join Voovers+ Today
100% risk free. Cancel anytime.
Scroll to Top