Synthetic Division Calculator

Learn how to use synthetic division.

Synthetic Division Calculator

Divide:
By:
x32x28x35
x5
How to Use This Calculator

Solution

Return to calculator
Fill in the input fields to calculate the solution.
Want unlimited access to calculators, answers, and solution steps?
Join Now
100% risk free. Cancel anytime.
INTRODUCING

Synthetic Division Lesson

What is Synthetic Division?

Synthetic division is a simplified form of polynomial division. It allows us to divide a polynomial of second or higher degree, such as x3 - 2x2 - 8x - 35, by a first-degree polynomial (also called a linear factor), such as x - 5.

example of synthetic division
Example of synthetic division for x3 - 2x2 - 8x - 35 divided by x - 5.

As seen in the image above, synthetic division uses an L-shaped division line to guide us during our calculations. Once we convert our division polynomials to the correct format for synthetic division, we simply repeat multiplication and addition to find the quotient.

Compared to long division, synthetic division is more restricted in use as we must be dividing by a first-degree polynomial (also called a linear factor), but, it can often be more convenient and easier to use.

Why do we Learn About Synthetic Division?

Since synthetic division allows us to divide polynomials and therefore find the zeros (roots) of polynomials, it has countless real-world uses. Let's check out just one of these many uses: predicting storm patterns to keep people safe from dangerous weather.

thunderstorm with lightning
A thunderstorm producing cloud-to-cloud lightning.

Meteorologists often use polynomials to model weather patterns. Some of these polynomials approximate when and where severe storms may occur and impact the people who live there, who need to have accurate warning far in advance to prepare for potentially dangerous weather.

A way to use these approximation polynomials for storm predictions is to solve the polynomial by finding its zeros (roots). Fortunately, synthetic division can simplify polynomials and provide us a direct path to finding these zeros (roots).

By dividing a second-degree or higher polynomial by a first-degree polynomial like we do with synthetic division, we can determine the quotient which is often another first-degree polynomial.

The quotient polynomial and polynomial we divided by (called the divisor or denominator) form a factored version of the original approximation polynomial. Because it is now factored, we can easily find the zeros (roots) of the original polynomial by setting each of the first-degree, factored polynomials equal to zero and solving for x.

Once we have found the x solutions of these factored polynomials, we now know the solutions to the polynomial for predicting the potential storms! By using synthetic division, we have potentially helped people stay out of harm's way.

How to do a Synthetic Division Calculation (Example Problem 1)

Use synthetic division to solve the polynomial division problem:x32x28x35x5To do this, we will:1) Determine the zero of our divisor (denominator)and the coefficients of our dividend (numerator)2) Set up our synthetic division framework3) Perform the synthetic division process (multiplication andaddition of numbers) to get our final answer1) First, let's determine the zero of our divisor (denominator)and the coefficients of our dividend (numerator).1.1) Our divisor (denominator) is given as: x5Setting it equal to zero and solving for x, we get:x5=0x=5Divisor (denominator) zero =51.2) Our dividend (numerator) polynomial is given as: x32x28x35Our coefficients in order from their term'sgreatest degree to least degree are as follows:The coefficient of the x3 term is 1The coefficient of the x2 term is 2The coefficient of the x1 term is 8The coefficient of the x0 term is 35Dividend (numerator) coefficients=128352) Now, let's set up our synthetic division framework. To do this, we will:Draw a sideways L-shaped division lineWrite the dividend (numerator) coefficients inside the L andin order from their term's greatest degree to least degreeWrite the divisor (denominator) root outside the L and to the leftDoing so, we get:512835To finish setting up the framework, let's drop thefirst dividend (numerator) coefficient down tojust below the bottom line. Doing so, we get:51128351513) Finally, let's use the synthetic division process to determine our answer.3.1a) Multiplying the bottom right number (1) by the top leftnumber (5), we get: (1)(5)=5After inserting the product (5) up and to the rightof the bottom right number by one slot, we now have:5112835155151283551515353.1b) Vertically adding the new product (5) to the coefficient directlyabove it (2), we get: (5)+(2)=3After inserting that sum directly below, we now have:5112835155135128355151535We will repeat the previous two operations (a & b) until our bottom rowhas the same amount of numbers as the dividend has coefficients (4)3.2a) Multiplying the bottom right number (3) by the top leftnumber (5), we get: (3)(5)=15After inserting the product (15) up and to the rightof the bottom right number by one slot, we now have:5112835151551351283551515353.2b) Vertically adding the new product (15) to the coefficient directlyabove it (8), we get: (15)+(8)=7After inserting that sum directly below, we now have:51128351515513751283551515353.3a) Multiplying the bottom right number (7) by the top leftnumber (5), we get: (7)(5)=35After inserting the product (35) up and to the rightof the bottom right number by one slot, we now have:5112835151535513751283551515353.3b) Vertically adding the new product (35) to the coefficient directlyabove it (35), we get: (35)+(35)=0After inserting that sum directly below, we now have:5112835151535513705128355151535We have now reached the end of the synthetic division process.Since the final number at the bottom right is zero, there is no remainder.Our newly calculated bottom row of numbers (except for the last one, whichis the remainder) divided by the leading coefficient for x (1) from our originaldivisor (denominator) will create the answer (quotient) polynomial.Answer (quotient) coefficients: 1,3,7Made into a polynomial: x2+3x+7Divided by the divisor's x coefficient (1): x2+3x+7Final answer (quotient)=x2+3x+7With no remainder (R=0)

How to do a Synthetic Division Calculation (Example Problem 2)

Use synthetic division to solve the polynomial division problem:2x2+2x142x+6To do this, we will:1) Determine the zero of our divisor (denominator)and the coefficients of our dividend (numerator)2) Set up our synthetic division framework3) Perform the synthetic division process (multiplication andaddition of numbers) to get our final answer1) First, let's determine the zero of our divisor (denominator)and the coefficients of our dividend (numerator).1.1) Our divisor (denominator) is given as: 2x+6Setting it equal to zero and solving for x, we get:2x+6=0x=3Divisor (denominator) zero =31.2) Our dividend (numerator) polynomial is given as: 2x2+2x14Our coefficients in order from their term'sgreatest degree to least degree are as follows:The coefficient of the x2 term is 2The coefficient of the x1 term is 2The coefficient of the x0 term is 14Dividend (numerator) coefficients=22142) Now, let's set up our synthetic division framework. To do this, we will:Draw a sideways L-shaped division lineWrite the dividend (numerator) coefficients inside the L andin order from their term's greatest degree to least degreeWrite the divisor (denominator) root outside the L and to the leftDoing so, we get:32214To finish setting up the framework, let's drop thefirst dividend (numerator) coefficient down tojust below the bottom line. Doing so, we get:3122142323) Finally, let's use the synthetic division process to determine our answer.3.1a) Multiplying the bottom right number (2) by the top leftnumber (3), we get: (2)(3)=6After inserting the product (6) up and to the rightof the bottom right number by one slot, we now have:312214263232214326123.1b) Vertically adding the new product (6) to the coefficient directlyabove it (2), we get: (6)+(2)=4After inserting that sum directly below, we now have:312214263243221432612We will repeat the previous two operations (a & b) until our bottom rowhas the same amount of numbers as the dividend has coefficients (3)3.2a) Multiplying the bottom right number (4) by the top leftnumber (3), we get: (4)(3)=12After inserting the product (12) up and to the rightof the bottom right number by one slot, we now have:312214261232432214326123.2b) Vertically adding the new product (12) to the coefficient directlyabove it (14), we get: (12)+(14)=2After inserting that sum directly below, we now have:312214261232423221432612We have now reached the end of the synthetic division process.Since the final number at the bottom right is not zero, thereis a remainder. The remainder is the bottom right number (2).Our newly calculated bottom row of numbers (except for the last one, whichis the remainder) divided by the leading coefficient for x (2) from our originaldivisor (denominator) will create the answer (quotient) polynomial.Answer (quotient) coefficients: 2,4Made into a polynomial: 2x4Divided by the divisor's x coefficient (2): 2x42Final answer (quotient)=2x42With a remainder of:R=2

How the Calculator Works

The Synthetic Division Calculator on this page is written in the programming languages HTML, CSS, and JS.

HTML (HyperText Markup Language) is what creates the calculator's framework. Every entity the builds up what we see with the calculator is coded as an HTML element. The HTML assigns identification names to each of these to help the CSS and JS access and modify them.

CSS (Cascading Style Sheets) controls how the HTML elements appear to us. It can move them around, color them, shape them, and even creates the animations of the buttons that we click. Without CSS, the calculator would not look as good or be as user-friendly!

JS (JavaScript) is the motor behind the scenes that makes things tick. For this calculator, the inputs are detected, calculations are performed, and errors are reported all via JS. Because JS runs naturally and efficiently in our internet browsers, the calculator can provide nearly instantaneous solutions!

Learning math has never been easier.
Get unlimited access to more than 168 personalized lessons and 73 interactive calculators.
Join Voovers+ Today
100% risk free. Cancel anytime.